Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nat Genet ; 56(4): 627-636, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38514783

ABSTRACT

We present a gene-level regulatory model, single-cell ATAC + RNA linking (SCARlink), which predicts single-cell gene expression and links enhancers to target genes using multi-ome (scRNA-seq and scATAC-seq co-assay) sequencing data. The approach uses regularized Poisson regression on tile-level accessibility data to jointly model all regulatory effects at a gene locus, avoiding the limitations of pairwise gene-peak correlations and dependence on peak calling. SCARlink outperformed existing gene scoring methods for imputing gene expression from chromatin accessibility across high-coverage multi-ome datasets while giving comparable to improved performance on low-coverage datasets. Shapley value analysis on trained models identified cell-type-specific gene enhancers that are validated by promoter capture Hi-C and are 11× to 15× and 5× to 12× enriched in fine-mapped eQTLs and fine-mapped genome-wide association study (GWAS) variants, respectively. We further show that SCARlink-predicted and observed gene expression vectors provide a robust way to compute a chromatin potential vector field to enable developmental trajectory analysis.


Subject(s)
Chromatin , Genome-Wide Association Study , Chromatin/genetics , Regulatory Sequences, Nucleic Acid , Gene Expression Regulation , Promoter Regions, Genetic/genetics , RNA , Single-Cell Analysis/methods
2.
Nature ; 627(8003): 399-406, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38448581

ABSTRACT

Immune cells rely on transient physical interactions with other immune and non-immune populations to regulate their function1. To study these 'kiss-and-run' interactions directly in vivo, we previously developed LIPSTIC (labelling immune partnerships by SorTagging intercellular contacts)2, an approach that uses enzymatic transfer of a labelled substrate between the molecular partners CD40L and CD40 to label interacting cells. Reliance on this pathway limited the use of LIPSTIC to measuring interactions between CD4+ T helper cells and antigen-presenting cells, however. Here we report the development of a universal version of LIPSTIC (uLIPSTIC), which can record physical interactions both among immune cells and between immune and non-immune populations irrespective of the receptors and ligands involved. We show that uLIPSTIC can be used, among other things, to monitor the priming of CD8+ T cells by dendritic cells, reveal the steady-state cellular partners of regulatory T cells and identify germinal centre-resident T follicular helper cells on the basis of their ability to interact cognately with germinal centre B cells. By coupling uLIPSTIC with single-cell transcriptomics, we build a catalogue of the immune populations that physically interact with intestinal epithelial cells at the steady state and profile the evolution of the interactome of lymphocytic choriomeningitis virus-specific CD8+ T cells in multiple organs following systemic infection. Thus, uLIPSTIC provides a broadly useful technology for measuring and understanding cell-cell interactions across multiple biological systems.


Subject(s)
B-Lymphocytes , CD8-Positive T-Lymphocytes , Cell Communication , Dendritic Cells , Epithelial Cells , T Follicular Helper Cells , T-Lymphocytes, Regulatory , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Communication/immunology , Dendritic Cells/cytology , Dendritic Cells/immunology , Ligands , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , T Follicular Helper Cells/cytology , T Follicular Helper Cells/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Germinal Center/cytology , Single-Cell Gene Expression Analysis , Epithelial Cells/cytology , Epithelial Cells/immunology , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Lymphocytic choriomeningitis virus/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Organ Specificity
3.
Nat Methods ; 21(4): 723-734, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38504114

ABSTRACT

The ENCODE Consortium's efforts to annotate noncoding cis-regulatory elements (CREs) have advanced our understanding of gene regulatory landscapes. Pooled, noncoding CRISPR screens offer a systematic approach to investigate cis-regulatory mechanisms. The ENCODE4 Functional Characterization Centers conducted 108 screens in human cell lines, comprising >540,000 perturbations across 24.85 megabases of the genome. Using 332 functionally confirmed CRE-gene links in K562 cells, we established guidelines for screening endogenous noncoding elements with CRISPR interference (CRISPRi), including accurate detection of CREs that exhibit variable, often low, transcriptional effects. Benchmarking five screen analysis tools, we find that CASA produces the most conservative CRE calls and is robust to artifacts of low-specificity single guide RNAs. We uncover a subtle DNA strand bias for CRISPRi in transcribed regions with implications for screen design and analysis. Together, we provide an accessible data resource, predesigned single guide RNAs for targeting 3,275,697 ENCODE SCREEN candidate CREs with CRISPRi and screening guidelines to accelerate functional characterization of the noncoding genome.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , RNA, Guide, CRISPR-Cas Systems , Genome , K562 Cells
4.
Cancer Immunol Res ; 11(12): 1571-1577, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37906619

ABSTRACT

The Arthur and Sandra Irving Cancer Immunology Symposium has been created as a platform for established cancer immunologists to mentor trainees and young investigators as they launch their research career in the field. By sharing their different paths to success, the senior faculty mentors provide an invaluable resource to support the development of the next generation of leaders in the cancer immunology community. This Commentary describes some of the key topics that were discussed during the 2022 symposium: scientific and career trajectory, leadership, mentoring, collaborations, and publishing. For each of these topics, established investigators discussed the elements that facilitate success in these areas as well as mistakes that can hinder progress. Herein, we outline the critical points raised in these discussions for establishing a successful independent research career. These points are highly relevant for the broader scientific community.


Subject(s)
Mentoring , Neoplasms , Physicians , Humans , Mentors , Research Personnel , Neoplasms/therapy
5.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-36993443

ABSTRACT

Cellular interactions are essential for tissue organization and functionality. In particular, immune cells rely on direct and usually transient interactions with other immune and non-immune populations to specify and regulate their function. To study these "kiss-and-run" interactions directly in vivo, we previously developed LIPSTIC (Labeling Immune Partnerships by SorTagging Intercellular Contacts), an approach that uses enzymatic transfer of a labeled substrate between the molecular partners CD40L and CD40 to label interacting cells. Reliance on this pathway limited the use of LIPSTIC to measuring interactions between CD4+ helper T cells and antigen presenting cells, however. Here, we report the development of a universal version of LIPSTIC (uLIPSTIC), which can record physical interactions both among immune cells and between immune and non-immune populations irrespective of the receptors and ligands involved. We show that uLIPSTIC can be used, among other things, to monitor the priming of CD8+ T cells by dendritic cells, reveal the cellular partners of regulatory T cells in steady state, and identify germinal center (GC)-resident T follicular helper (Tfh) cells based on their ability to interact cognately with GC B cells. By coupling uLIPSTIC with single-cell transcriptomics, we build a catalog of the immune populations that physically interact with intestinal epithelial cells (IECs) and find evidence of stepwise acquisition of the ability to interact with IECs as CD4+ T cells adapt to residence in the intestinal tissue. Thus, uLIPSTIC provides a broadly useful technology for measuring and understanding cell-cell interactions across multiple biological systems.

6.
J Immunol ; 210(7): 880-887, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36947819

ABSTRACT

Regulatory T (Treg) cells are critical for tolerance to self-antigens and for preventing autoimmunity. Foxp3 has been identified as a Treg cell lineage-defining transcription factor controlling Treg cell differentiation and function. In this article, we review the current mechanistic and systemic understanding of Foxp3 function enabled by experimental and computational advances in high-throughput genomics.


Subject(s)
Gene Expression Regulation , T-Lymphocytes, Regulatory , Cell Differentiation/genetics , Transcription Factors/genetics , Genomics , Forkhead Transcription Factors/metabolism
7.
Immunity ; 55(7): 1173-1184.e7, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35700740

ABSTRACT

Regulatory T (Treg) cells expressing the transcription factor Foxp3 are an essential suppressive T cell lineage of dual origin: Foxp3 induction in thymocytes and mature CD4+ T cells gives rise to thymic (tTreg) and peripheral (pTreg) Treg cells, respectively. While tTreg cells suppress autoimmunity, pTreg cells enforce tolerance to food and commensal microbiota. However, the role of Foxp3 in pTreg cells and the mechanisms supporting their differentiation remain poorly understood. Here, we used genetic tracing to identify microbiota-induced pTreg cells and found that many of their distinguishing features were Foxp3 independent. Lineage-committed, microbiota-dependent pTreg-like cells persisted in the colon in the absence of Foxp3. While Foxp3 was critical for the suppression of a Th17 cell program, colitis, and mastocytosis, pTreg cells suppressed colonic effector T cell expansion in a Foxp3-independent manner. Thus, Foxp3 and the tolerogenic signals that precede and promote its expression independently confer distinct facets of pTreg functionality.


Subject(s)
Forkhead Transcription Factors , T-Lymphocytes, Regulatory , Forkhead Transcription Factors/metabolism , Immune Tolerance , Th17 Cells/metabolism , Thymocytes/metabolism
8.
Nat Immunol ; 23(1): 122-134, 2022 01.
Article in English | MEDLINE | ID: mdl-34937932

ABSTRACT

T cell activation, a key early event in the adaptive immune response, is subject to elaborate transcriptional control. In the present study, we examined how the activities of eight major transcription factor (TF) families are integrated to shape the epigenome of naive and activated CD4 and CD8 T cells. By leveraging extensive polymorphisms in evolutionarily divergent mice, we identified the 'heavy lifters' positively influencing chromatin accessibility. Members of Ets, Runx and TCF/Lef TF families occupied the vast majority of accessible chromatin regions, acting as 'housekeepers', 'universal amplifiers' and 'placeholders', respectively, at sites that maintained or gained accessibility upon T cell activation. In addition, a small subset of strongly induced immune response genes displayed a noncanonical TF recruitment pattern. Our study provides a key resource and foundation for the understanding of transcriptional and epigenetic regulation in T cells and offers a new perspective on the hierarchical interactions between critical TFs.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Epigenome/immunology , Lymphocyte Activation/immunology , Transcription Factors/immunology , Adaptive Immunity/immunology , Animals , Chromatin/immunology , Epigenesis, Genetic/immunology , Gene Expression Regulation/immunology , Male , Mice
9.
Sci Transl Med ; 13(611): eabg4328, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34524864

ABSTRACT

Adoptive T cell therapy (ACT) is a promising strategy for treating cancer, but it often fails because of cell intrinsic regulatory programs that limit the degree or duration of T cell function. In this study, we found that ectopic expression of microRNA-200c (miR-200c) markedly enhanced the antitumor activity of CD8+ cytotoxic T lymphocytes (CTLs) during ACT in multiple mouse models. CTLs transduced with miR-200c exhibited reduced apoptosis during engraftment and enhanced in vivo persistence, accompanied by up-regulation of the transcriptional regulator T cell factor 1 (TCF1) and the inflammatory cytokine tumor necrosis factor (TNF). miR-200c elicited these changes by suppressing the transcription factor Zeb1 and thereby inducing genes characteristic of epithelial cells. Overexpression of one of these genes, Epcam, was sufficient to augment therapeutic T cell responses against both solid and liquid tumors. These results identify the miR-200c­EpCAM axis as an avenue for improving ACT and demonstrate that select genetic perturbations can produce phenotypically distinct T cells with advantageous therapeutic properties.


Subject(s)
Epithelial Cell Adhesion Molecule , Immunotherapy, Adoptive , MicroRNAs , Neoplasms, Experimental/immunology , Animals , Cell Line, Tumor , Cell- and Tissue-Based Therapy , Epithelial Cell Adhesion Molecule/genetics , Gene Expression Regulation, Neoplastic , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/genetics , T-Lymphocytes
10.
Mol Cell ; 81(11): 2477-2493.e10, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33891860

ABSTRACT

CD8 T cells play an essential role in defense against viral and bacterial infections and in tumor immunity. Deciphering T cell loss of functionality is complicated by the conspicuous heterogeneity of CD8 T cell states described across experimental and clinical settings. By carrying out a unified analysis of over 300 assay for transposase-accessible chromatin sequencing (ATAC-seq) and RNA sequencing (RNA-seq) experiments from 12 studies of CD8 T cells in cancer and infection, we defined a shared differentiation trajectory toward dysfunction and its underlying transcriptional drivers and revealed a universal early bifurcation of functional and dysfunctional T cell states across models. Experimental dissection of acute and chronic viral infection using single-cell ATAC (scATAC)-seq and allele-specific single-cell RNA (scRNA)-seq identified state-specific drivers and captured the emergence of similar TCF1+ progenitor-like populations at an early branch point, at which functional and dysfunctional T cells diverge. Our atlas of CD8 T cell states will facilitate mechanistic studies of T cell immunity and translational efforts.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epigenesis, Genetic/immunology , Immunity, Cellular , Lymphocytic Choriomeningitis/genetics , Neoplasms/genetics , Transcription Factors/genetics , Acute Disease , Atlases as Topic , CD8-Positive T-Lymphocytes/classification , CD8-Positive T-Lymphocytes/pathology , Chromatin/chemistry , Chromatin/immunology , Chronic Disease , Gene Expression Profiling , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing/methods , Humans , Lymphocyte Activation , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/pathology , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/pathogenicity , Neoplasms/immunology , Neoplasms/pathology , Principal Component Analysis , Single-Cell Analysis , Transcription Factors/classification , Transcription Factors/immunology , Transcription, Genetic , Transposases/genetics , Transposases/metabolism
11.
Proc Natl Acad Sci U S A ; 117(52): 33446-33454, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33318189

ABSTRACT

Reduced nutrient intake is a widely conserved manifestation of sickness behavior with poorly characterized effects on adaptive immune responses. During infectious challenges, naive T cells encountering their cognate antigen become activated and differentiate into highly proliferative effector T cells. Despite their evident metabolic shift upon activation, it remains unclear how effector T cells respond to changes in nutrient availability in vivo. Here, we show that spontaneous or imposed feeding reduction during infection decreases the numbers of splenic lymphocytes. Effector T cells showed cell-intrinsic responses dependent on the nuclear receptor Farnesoid X Receptor (FXR). Deletion of FXR in T cells prevented starvation-induced loss of lymphocytes and increased effector T cell fitness in nutrient-limiting conditions, but imparted greater weight loss to the host. FXR deficiency increased the contribution of glutamine and fatty acids toward respiration and enhanced cell survival under low-glucose conditions. Provision of glucose during anorexia of infection rescued effector T cells, suggesting that this sugar is a limiting nutrient for activated lymphocytes and that alternative fuel usage may affect cell survival in starved animals. Altogether, we identified a mechanism by which the host scales immune responses according to food intake, featuring FXR as a T cell-intrinsic sensor.


Subject(s)
Feeding Behavior , Lymphocytic Choriomeningitis/immunology , Receptors, Cytoplasmic and Nuclear/metabolism , T-Lymphocytes/immunology , Animals , Anorexia/virology , Fasting , Lymphocytic Choriomeningitis/pathology , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/physiology , Mice, Inbred C57BL , Nutrients/metabolism , Spleen/pathology , Transcription, Genetic
12.
Mol Cell ; 79(1): 167-179.e11, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32497496

ABSTRACT

The identification of microRNA (miRNA) targets by Ago2 crosslinking-immunoprecipitation (CLIP) methods has provided major insights into the biology of this important class of non-coding RNAs. However, these methods are technically challenging and not easily applicable to an in vivo setting. To overcome these limitations and facilitate the investigation of miRNA functions in vivo, we have developed a method based on a genetically engineered mouse harboring a conditional Halo-Ago2 allele expressed from the endogenous Ago2 locus. By using a resin conjugated to the HaloTag ligand, Ago2-miRNA-mRNA complexes can be purified from cells and tissues expressing the endogenous Halo-Ago2 allele. We demonstrate the reproducibility and sensitivity of this method in mouse embryonic stem cells, developing embryos, adult tissues, and autochthonous mouse models of human brain and lung cancers. This method and the datasets we have generated will facilitate the characterization of miRNA-mRNA networks in vivo under physiological and pathological conditions.


Subject(s)
Argonaute Proteins/physiology , Embryonic Stem Cells/metabolism , Glioma/metabolism , MicroRNAs/metabolism , RNA, Messenger/metabolism , Recombinant Fusion Proteins/metabolism , Animals , Embryonic Stem Cells/cytology , Female , Gene Expression Regulation , Glioma/genetics , Glioma/pathology , High-Throughput Nucleotide Sequencing , Hydrolases/genetics , Mice , Mice, Knockout , MicroRNAs/genetics , Protein Binding , RNA, Messenger/genetics , Recombinant Fusion Proteins/genetics
13.
Cell ; 179(4): 846-863.e24, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31668803

ABSTRACT

Dendritic cells (DCs) play a critical role in orchestrating adaptive immune responses due to their unique ability to initiate T cell responses and direct their differentiation into effector lineages. Classical DCs have been divided into two subsets, cDC1 and cDC2, based on phenotypic markers and their distinct abilities to prime CD8 and CD4 T cells. While the transcriptional regulation of the cDC1 subset has been well characterized, cDC2 development and function remain poorly understood. By combining transcriptional and chromatin analyses with genetic reporter expression, we identified two principal cDC2 lineages defined by distinct developmental pathways and transcriptional regulators, including T-bet and RORγt, two key transcription factors known to define innate and adaptive lymphocyte subsets. These novel cDC2 lineages were characterized by distinct metabolic and functional programs. Extending our findings to humans revealed conserved DC heterogeneity and the presence of the newly defined cDC2 subsets in human cancer.


Subject(s)
Cell Differentiation/genetics , Cell Lineage/genetics , Genetic Heterogeneity , Neoplasms/immunology , Adaptive Immunity/genetics , Animals , Cell Differentiation/immunology , Chromatin/genetics , Dendritic Cells/immunology , Gene Expression Regulation, Developmental , Humans , Immunity, Innate/genetics , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Mice , Neoplasms/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transcription, Genetic/immunology
14.
Nat Immunol ; 20(2): 232-242, 2019 02.
Article in English | MEDLINE | ID: mdl-30643266

ABSTRACT

Regulatory T cells (Treg cells), whose differentiation and function are controlled by transcription factor Foxp3, express the closely related family member Foxp1. Here we explored Foxp1 function in Treg cells. We found that a large number of Foxp3-bound genomic sites in Treg cells were occupied by Foxp1 in both Treg cells and conventional T cells (Tconv cells). In Treg cells, Foxp1 markedly increased Foxp3 binding to these sites. Foxp1 deficiency in Treg cells resulted in their impaired function and competitive fitness, associated with markedly reduced CD25 expression and interleukin-2 (IL-2) responsiveness, diminished CTLA-4 expression and increased SATB1 expression. The characteristic expression patterns of CD25, Foxp3 and CTLA-4 in Treg cells were fully or partially rescued by strong IL-2 signaling. Our studies suggest that Foxp1 serves an essential non-redundant function in Treg cells by enforcing Foxp3-mediated regulation of gene expression and enabling efficient IL-2 signaling in these cells.


Subject(s)
Chromatin/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Regulation/immunology , Repressor Proteins/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , Cells, Cultured , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Interleukin-2/immunology , Interleukin-2/metabolism , Male , Mice , Mice, Transgenic , Primary Cell Culture , Repressor Proteins/genetics , Repressor Proteins/immunology , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology
15.
Nat Immunol ; 19(9): 963-972, 2018 09.
Article in English | MEDLINE | ID: mdl-30082830

ABSTRACT

Clonal expansion and immunological memory are hallmark features of the mammalian adaptive immune response and essential for prolonged host control of pathogens. Recent work demonstrates that natural killer (NK) cells of the innate immune system also exhibit these adaptive traits during infection. Here we demonstrate that differentiating and 'memory' NK cells possess distinct chromatin accessibility states and that their epigenetic profiles reveal a 'poised' regulatory program at the memory stage. Furthermore, we elucidate how individual STAT transcription factors differentially control epigenetic and transcriptional states early during infection. Finally, concurrent chromatin profiling of the canonical CD8+ T cell response against the same infection demonstrated parallel and distinct epigenetic signatures defining NK cells and CD8+ T cells. Overall, our study reveals the dynamic nature of epigenetic modifications during the generation of innate and adaptive lymphocyte memory.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Chromatin/metabolism , Herpesviridae Infections/immunology , Killer Cells, Natural/physiology , Muromegalovirus/physiology , STAT1 Transcription Factor/metabolism , STAT4 Transcription Factor/metabolism , Adaptive Immunity , Animals , Cells, Cultured , Chromatin/genetics , Clonal Selection, Antigen-Mediated , Epigenesis, Genetic , Gene Expression Profiling , Immunity, Innate , Immunologic Memory , Mice , Mice, Inbred C57BL , Mice, Knockout , STAT1 Transcription Factor/genetics , STAT4 Transcription Factor/genetics
16.
Cell Rep ; 24(8): 1949-1957.e6, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30134157

ABSTRACT

Natural killer (NK) cells are innate lymphocytes that possess adaptive features, including antigen-specific clonal expansion and long-lived memory responses. Although previous work demonstrated that type I interferon (IFN) signaling is crucial for NK cell expansion and memory cell formation following mouse cytomegalovirus (MCMV) infection, the global transcriptional mechanisms underlying type I IFN-mediated responses remained to be determined. Here, we demonstrate that among the suite of transcripts induced in activated NK cells, IFN-α is necessary and sufficient to promote expression of its downstream transcription factors STAT1, STAT2, and IRF9, via an auto-regulatory, feedforward loop. Similar to STAT1 deficiency, we show that STAT2- or IRF9-deficient NK cells are defective in their ability to expand following MCMV infection, in part because of diminished survival rather than an inability to proliferate. Thus, our findings demonstrate that individual ISGF3 components are crucial cell-autonomous and non-redundant regulators of the NK cell response to viral infection.


Subject(s)
Interferon-alpha/metabolism , Killer Cells, Natural/metabolism , STAT1 Transcription Factor/metabolism , Virus Diseases/physiopathology , Cell Survival , Humans , Signal Transduction
17.
Cell ; 171(4): 795-808.e12, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29056343

ABSTRACT

Infection is restrained by the concerted activation of tissue-resident and circulating immune cells. Whether tissue-resident lymphocytes confer early antiviral immunity at local sites of primary infection prior to the initiation of circulating responses is not well understood. Furthermore, the kinetics of initial antiviral responses at sites of infection remain unclear. Here, we show that tissue-resident type 1 innate lymphoid cells (ILC1) serve an essential early role in host immunity through rapid production of interferon (IFN)-γ following viral infection. Ablation of Zfp683-dependent liver ILC1 lead to increased viral load in the presence of intact adaptive and innate immune cells critical for mouse cytomegalovirus (MCMV) clearance. Swift production of interleukin (IL)-12 by tissue-resident XCR1+ conventional dendritic cells (cDC1) promoted ILC1 production of IFN-γ in a STAT4-dependent manner to limit early viral burden. Thus, ILC1 contribute an essential role in viral immunosurveillance at sites of initial infection in response to local cDC1-derived proinflammatory cytokines.


Subject(s)
Herpesviridae Infections/immunology , Lymphocytes/immunology , Muromegalovirus/physiology , Animals , Herpesviridae Infections/pathology , Immunity, Innate , Immunologic Surveillance , Inflammation/immunology , Interferon-gamma/immunology , Killer Cells, Natural/immunology , Liver/cytology , Liver/immunology , Mice, Inbred C57BL , Peritoneal Cavity/cytology , Virus Replication
18.
RNA ; 23(7): 1097-1109, 2017 07.
Article in English | MEDLINE | ID: mdl-28420675

ABSTRACT

Piwi-interacting RNAs (piRNAs) are central components of the piRNA pathway, which directs transposon silencing and guarantees genome integrity in the germ cells of several metazoans. In Drosophila, piRNAs are produced from discrete regions of the genome termed piRNA clusters, whose expression relies on the RDC complex comprised of the core proteins Rhino, Deadlock, and Cutoff. To date, the RDC complex has been exclusively implicated in the regulation of the piRNA loci. Here we further elucidate the function of Cutoff and the RDC complex by performing genome-wide ChIP-seq and RNA-seq assays in the Drosophila ovaries and analyzing these data together with other publicly available data sets. In agreement with previous studies, we confirm that Cutoff is involved in the transcriptional regulation of piRNA clusters and in the repression of transposable elements in germ cells. Surprisingly, however, we find that Cutoff is enriched at and affects the expression of other noncoding RNAs, including spliceosomal RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). At least in some instances, Cutoff appears to act at a transcriptional level in concert with Rhino and perhaps Deadlock. Finally, we show that mutations in Cutoff result in the deregulation of hundreds of protein-coding genes in germ cells. Our study uncovers a broader function for the RDC complex in the Drosophila germline development.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Ovary/growth & development , RNA, Small Interfering/metabolism , RNA, Untranslated/metabolism , RNA-Binding Proteins/metabolism , Animals , Chromatin Immunoprecipitation , DNA Transposable Elements , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Female , Gene Expression Regulation , Gene Expression Regulation, Developmental , Mutation , Ovary/chemistry , RNA-Binding Proteins/genetics , Sequence Analysis, RNA/methods
19.
Nat Biotechnol ; 35(4): 347-349, 2017 04.
Article in English | MEDLINE | ID: mdl-28263296

ABSTRACT

We present GuideScan software for the design of CRISPR guide RNA libraries that can be used to edit coding and noncoding genomic regions. GuideScan produces high-density sets of guide RNAs (gRNAs) for single- and paired-gRNA genome-wide screens. We also show that the trie data structure of GuideScan enables the design of gRNAs that are more specific than those designed by existing tools.


Subject(s)
Algorithms , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Silencing , Machine Learning , RNA, Small Interfering/genetics , Software , CRISPR-Cas Systems/genetics , Chromosome Mapping/methods , Sequence Analysis, RNA/methods
20.
Cell ; 164(3): 365-77, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26806130

ABSTRACT

Malignancy can be suppressed by the immune system in a process termed immunosurveillance. However, to what extent immunosurveillance occurs in spontaneous cancers and the composition of participating cell types remains obscure. Here, we show that cell transformation triggers a tissue-resident lymphocyte response in oncogene-induced murine cancer models. Non-circulating cytotoxic lymphocytes, derived from innate, T cell receptor (TCR)αß, and TCRγδ lineages, expand in early tumors. Characterized by high expression of NK1.1, CD49a, and CD103, these cells share a gene-expression signature distinct from those of conventional NK cells, T cells, and invariant NKT cells. Generation of these lymphocytes is dependent on the cytokine IL-15, but not the transcription factor Nfil3 that is required for the differentiation of tumor-infiltrating NK cells, and IL-15 deficiency, but not Nfil3 deficiency, results in accelerated tumor growth. These findings reveal a tumor-elicited immunosurveillance mechanism that engages unconventional type-1-like innate lymphoid cells and type 1 innate-like T cells.


Subject(s)
Lymphocytes/immunology , Mammary Neoplasms, Experimental/immunology , Monitoring, Immunologic , T-Lymphocyte Subsets/immunology , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Granzymes/metabolism , Interleukin-15/immunology , Mice , Mice, Inbred C57BL , Receptors, Antigen, T-Cell, alpha-beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...